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COMPUTATION OF THE TRIVARIATE NORMAL INTEGRAL 

ZVI DREZNER 

ABSTRACT. We propose a simple and efficient way to calculate trivariate normal 
probabilities. The algorithm is based on a formula for the partial derivative of 
the trivariate probability with respect to a correlation coefficient. 

1. INTRODUCTION 

The trivariate normal distribution is defined by a correlation matrix R, 

( 1 P12 P13\ 
R= P12 1 P23J. 

P13 P23 1J 

The trivariate probability L3(hI, h2, h3; P12, P13, P23) (or L3(h; R)) is [6]: 

L3(hi , h2, h3; P12, P13, P23) 

(1) =~ 3~R~ 1J 1, 1, e-xR-'x2 dX3 dX2 dxl, 

where xT = (X1, X2, x3). The L function is by definition 

(2) L3(hi, h2, h3; R) = Pr[(X1 > hi) n (X2 > h2) n (X3 > h3)]. 

The bivariate and univariate normal distributions are defined by [3, 6]: 

(3) L2(hl, h2; p) = Pr[(Xl > hi) n (X2 > h2)] 

(4) L1(h) = Pr(X > h). 

An efficient way, by using a five-point Gaussian quadrature, to calculate Li (h) 
and L2(h; p) to an accuracy of 2 -10-7 for -1 < p < 1 is given in [5]. 
Applying the same method, with Gaussian quadrature based on more than five 
points, yields any desired accuracy. Our goal here is to calculate L3 to the same 
accuracy for most values of the Pij 's. Therefore, it is assumed that if values of 
L1 and L2 are required in our calculations, then they are easily available. 

The calculation of the integral (1) was a topic of research for a long time. 
See [6] for a survey of various computation methods and approximations. More 
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recent works on the multivariate normal integral that can be used to calculate 
the trivariate integral are [4, 9, 10]. In this paper we present a very efficient and 
accurate integration method specific to the trivariate normal integral. 

2. ON THE DETERMINANT OF R 

The determinant of R is 

(5) 1RI = 1 - P12 - P1- p23 + 2P12P13P23- 

A correlation matrix must be positive semidefinite, which translates into 
- ? Pij < 1, and jRj > 0. It can be easily shown that jRI < 1. One 
cannot have a correlation matrix for which IRI < 0, and therefore we do not 
need to worry about calculations involving "illegal" matrices for which IRI < 0. 

Another issue concerning the determinant of R is whether it is possible 
that certain values of the p's yield a positive determinant but smaller values 
yield a negative IRI. This issue is important because if we integrate from one 
value of p to another we must make sure that the path of integration passes 
through points for which IRI > 0. Intuitively, it seems that if we have a "legal" 
correlation matrix, then a correlation matrix with smaller p 's must also be legal. 
This is not necessarily true. Consider the following example. The three p 's are 
33/65, 60/65, 52/65. By direct calculations IRI = 0. If the first p is changed 
to 34/65, IRI > 0, and if it is changed to 32/65, then IRI < 0. However, if 
one p is held constant and the other two are changed proportionally, then if 
the original IRI is positive, so is the whole path. To prove this, define 

IR(t)I = 1 - t2p2- 2 - 
2_ + 2t2p 2P13P23. 

Theorem 1. If IR(t)I is positive for t = 1, then it is positive for 0 < t < 1 

Proof. We need to show that p12 + p 3 - 2p12P13P23 > 0. If P12P13 > 0, then 
P122 + P1- 2P12P13P23 = (P12 - P13)2 + 2p12P13(1 - P23) > 0. If P12P13 < 0, 
then pl12 + P13 - 2p12P13P23 = (P12 + P13)2 - 2P12P13(1 + P23) > 0. ? 

A similar result can also be shown: if all the three p's are reduced propor- 
tionally, then IRI increases. Simply, a reduction by a factor of Vt can be 
applied three times, once for each possible pair of p's, and the result is that 
each p is reduced by a factor of t. 

3. CALCULATION OF THE TRIVARIATE PROBABILITY 

There are a few specific cases where L3 can be expressed in formulas using 
L1 and L2. They are summarized in Table 1. 

TABLE 1. Some specific cases 

P12 P13 P23 L3(hi, h2, h3; R) 
0 0 0 L1 (h1)L2(h2)LI (h3) 
0 0 p LI(h1)L2(h2, h3; p) 
p p 1 L2(h1, max{h2, h3}; p) 
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The trivariate case for the general formula developed by Plackett [6, 8] is 

(6) aL3 = Z2(h1, h2; P12)LI(hl), 

where Z2 is the density function of L2: 

exp(- x2Y2-2pxy 

(7) Z2(X,Y; P) = exp( 
12jp2 

and h3 is 

(8) h' h3(1 - P12) - (P13 - P23P-2)hl (P23 -P3PI2)h2 

(1 -3 

We suggest two ways to apply (6). The first one is 

z &L3(h ; tP12, tP13, tP23) 
(9) L3(h; R) = L3(h; 0) + jE Pij a(tp11) dt 

Another approach is based on the second row in Table 1: 

(10) L'hR~~~-L~hOO~~ 
3 

& L3(h ; tP12, tP13, P23)dt ( 0) L3(h; R) = L3(h; 0, ?, P23) + XE Pii 19 (tI2tp,3 I 3) dt 
i=2 

where L3(h; 0, 0, P23)-= L(hi)L2(h2, h3; P23). 

By Theorem 1, IR(t)I > 0 on the whole integration interval as long as JRJ > 0 
for the original correlation matrix (at t = 1) . 

Since (9) and (10) are smoother for small p's, we suggest resorting the vari- 
ables such that P23 is the largest (in absolute value), and using (10) for inte- 
grating on the other two p 's. It is interesting to note that integrating one p 
at a time, as suggested in [8], may lead to a negative IRI as explained before 
Theorem 1. The integration can be done by Simpson's rule [1], or preferably by 
the Gauss quadrature formula based on Legendre polynomials [1]. Expression 
(10) is definitely superior to (9). 

4. ORTHANT PROBABILITIES 

As a result of (6)-(9), the orthant probabilities can be calculated explicitly. 
If h = 0, then h3 = 0, and LI(h') =1/2. Substituting into (6), we get 

aL3 Z2(0; P12) 

&P12 2 

Substituting into (9), we get 

L3(0; R) = + 2 E[L2(0; p1j) - L2(0; 0)] = + 4E sin' pij, 
1<1 i<j 

which is the result given in [2, 7]. 
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5. COMPUTATIONAL EXPERIENCE 

A FORTRAN program was written on an XT-compatible with math co- 
processor. We used the Gaussian quadrature based on Legendre polynomials 
with only five points [1]. This quadrature method was proven to be very effec- 
tive in calculating bivariate probabilities and requires very little computational 
effort [5]. Using a K-point quadrature formula requires the calculation of one 
bivariate integral, K exponents and K + 1 normal (univariate) probabilities. 
For K = 5, the program requires about 0.03 seconds on the XT-compatible. 

Problems with hi for i = 1, 2, 3 in [-3, 3] and the Pij 'S in [-Pnax, Pmax] 
were randomly generated using uniform distributions. If the determinant IRI 
is negative, the problem is discarded and a new one generated. The errors in 
the five-point quadrature formula were obtained by comparing with results cal- 
culated with a larger K and double-precision arithmetic. We also compared 
with the results obtained by the program in [4]. We encountered a very inter- 
esting phenomenon. For Pmax < 0.5, the error never exceeded 10-I. For larger 
Pmax (even for Pmax = 0.9) the error was limited by 10-7 in almost all cases 
but the error has reached 10-5 in very few cases. We believe that the error 
is more dependent on IRI than it is on large p's. So, we experimented with 
Pmax = 1 (i.e., generating any possible p) but allowed only problems where the 
determinant IRJ is greater than a given cutoff point between zero and one. For 
each cutoff experiment, 1000 feasible problems were generated. It was found 
that when the cutoff was 0.3 or higher, then the error was less than 10-7 for 
all 1000 problems. (Calculations were done in single-precision arithmetic.) For 
smaller cutoffs the errors were reasonable and are summarized in Table 2. 

TABLE 2. Experimentation with trivariate calculations 

{RI Cutoff Max Error 
0.200 0.0000001 
0.175 0.0000001 
0.150 0.0000001 
0.125 0.0000002 
0.100 0.0000007 
0.075 0.0000014 
0.050 0.0000026 
0.025 0.0000044 
0.000 0.0000117 

In conclusion, we presented a very efficient way to calculate trivariate proba- 
bilities. If the determinant IRI is greater than 0. 15, the error in the calculation 
is less than 10-7 . For smaller determinants (which means that the variables are 
close to being linearly dependent) the five-point Gaussian quadrature formula 
may give a higher error. If a better accuracy is sought, the quadrature can be 
done with more points, or Simpson's formula can be applied. 
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APPENDIX. A FORTRAN program 

FUNCTION TV(H,R,IER) 
C H contains the the values of hi h2, h3. 
C R contains the values of r12, r13, r23 in that order. 
C IER=1 Negative determinant. 
C =0 Calculation conmpleted. 
C The functions UV (Univariate) and BV (Bivariate) can be taken fromn 5]. 

DIMENSION X(5),W(5),H(3),R(3) 
DATA X/.04691008, .23076534, .5, .76923466, .95308992/ 
DATA W/.018854042,.038088059,.0452707394,.038088059,.018854042/ 
IER=1 
H1=H(1) 
H2=H(2) 
H3=H(3) 
R12=R(1) 
R13=R(2) 
R23=R(3) 
DO 1 K=1,3 
IF(ABS(R23).GE.ABS(R12).AND.ABS(R23).GE.ABS(R13))GO TO 2 
HH=H1 
H1=H2 
H2=H3 
H3=HH 
RR=R12 
R12=R23 
R23=R13 
R13=RR 

1 CONTINUE 
2 CONTINUE 

H12=H1*H2 
H13=H1*H3 
H122=(H1*H1+H2*H2)*0.5 
H132=(H1*H1+H3*H3)*0.5 
TV=O. 
DO 3 1=1,5 
RR12=R12*X( I) 
RR13=R13*X( I) 
DEL=1.-RR12*RR12-RR13*RR13-R23*R23+2*RR12*RR13*R23 
I F(DEL.LE.O. )RETURN 
FAC=SQRT(DEL) 
RR122=1.-RR12*RR12 
RR133=1. -RR13*RR13 
F1=RR13-R23*RR12 
F2=R23-RR12*RR13 
F3=RR12-R23*RR13 
HP1=(H3*RR122-H1*F1-H2*F2)/FAC/SQRT(RR122) 
HP2=(H2*RR133-H1*F3-H3*F2)/FAC/SQRT(RR133) 
TV=TV+W(I)*EXP((RR12*H12-H122)/RR122)/SQRT(RR122)*UV(HP1)*R12 

3 TV=TV+W(I)*EXP((RR13*H13-H132)/RR133)/SQRT(RR133)*LV(HP2)*R13 
TV=UV(H1)*BV(H2,H3,R23)+TVE1 
IER=O 
RETURN 
END 
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